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Predicting the Impact of Subsurface heterogeneous Hydraulic 
Conductivity on the Stochastic Behavior of Well Draw down in a 

Confined Aquifer Using Artificial Neural Networks 
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Groundwater flow and behavior have to be investigated based on heterogeneous subsurface 
formation since the homogeneity assumption of this formation is not valid. Over the past twenty 
years, stochastic approach and Monte Carlo technique have been utilized very efficiently to 
understand the groundwater flow behavior. However, these techniques require lots of  com- 
putational and numerical efforts according to the various researchers' comments. Therefore, 
utilizing new techniques with much less computational efforts such as Artificial Neural Network 
(ANN) in the prediction ofthe stochastic behavior for the groundwater based on heterogeneous 
subsurface formation is highly appreciated. The current paper introduces the ANN technique to 
investigate and predict the stochastic behavior of a well draw down in a confined aquifer based 
on subsurface heterogeneous hydraulic conductivity. Several ANN models are developed in this 
research to predict the unsteady two dimensional well draw down and its stochastic charac- 
teristics in a confined aquifer. The results of this study showed that ANN method with less 
computational efforts was very efficiently capable of simulating and predicting the stochastic 
behavior of the well draw down resulted from the continuous constant pumping in the middle 
of  a confined aquifer with subsurface heterogeneous hydraulic conductivity. 

Key Words : Artificial Neural Network, Groundwater, Well Draw Down, Stochastic, 
Heterogeneous Subsurface Formation 

1. I n t r o d u c t i o n  

Investigating the groundwater behavior cannot 
be performed using the homogeneous subsur- 
face assumption. Therefore, the utilization of the 
subsurface heterogeneity in understanding the 
groundwater flow behavior in any field applica- 
tion is necessary. Numerical and analytical sto- 
chastic approaches have been widely used to 
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accurately simulate the groundwater flow behav- 
ior. 

Pumping water using a deep groundwater well 
from a confined aquifer is considered one of the 
most common groundwater field applications. 
Understanding the unsteady well draw down 
spatially based on heterogeneous subsurface for- 
mation is very necessary for the field engineer in 
designing the well safe pumping rate to avoid 
draining the aquifer. Several researches have been 
directed mainly towards the investigation of the 
ground water How and its characteristics during 
the pumping process. Due to space limitation, 
only the recent ones will be considered in this 
text. Indelman et al. (1996) presented a first-order 
sensitivity analysis of draw down prediction con- 
sidering the uncertainty in estimating the hydrau- 
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lic properties of multiple leaky aquifer systems. 
In this study, a new set of dimensionless para- 
meters was suggested to reduce the amount of 
sensitivity coefficient calculations. On the other 
hand, Oliver (1998) presented a study to investi- 
gate the influence of nonuniform transmissivity 
and storativity on draw down. The author used 
the perturbation approach to derive the Frechet 
derivatives and kernels for the effect of two- 
dimensional areal variations in transmissivity and 
storativity on draw down at an observation well. 
The study showed that observation well draw 
down is relatively sensitive to near-well trans- 
missivity variation, especially if the nonunifor- 
mity was not radially symmetric around the 
well. Abdin and Abdeen (1999) presented a study 
to investigate the impact of subsurface hetero- 
geneous hydraulic conductivity on the unsteady 
two-dimensional pumping well draw down in a 
confined aquifer. The authors in this study uti- 
lized the well-known Monte Carlo technique to 
evaluate the variability of the unsteady draw 
down as a result from several variable hetero- 
geneous hydraulic conductivity realizations. The 
results of this study showed the importance of 
considering the variability in subsurface hydrau- 
lic conductivity in designing the pumping rate 
from a confined aquifer well and how the well 
draw down was very much affected by changing 
the subsurface properties. Different from the sto- 
chastic approach, Gebremariam (2002) presented 
a Phd study for the determination of aquifer 
parameters using pumping test data. The author 
stated that the data collected in the field by 
pumping test should be analyzed by producing 
standard graphs manually to match with or by 
using some computer softwares. The author uti- 
lized the Aquifer Test software version 3 to pro- 
cess pumping test data with aim of estimating 
aquifer properties such as hydraulic conductivity 
and storativity. He finally calibrated his estimated 
parameters by performing comparison between 
the measured and the calculated ground water 
potentials using Visual Modflow software. Re- 
cently and back to stochastic approach, Chan and 
Govindaraju (2003) developed a new mathema- 
tical model for the subsurface hydraulic proper- 

ties (specifically the soil water retention curve 
and the relative hydraulic conductivity curve) by 
conceptualizing the soil as a random assemblage 
of soil particles represented by randomly sized 
overlapping spheres (fully penetrable spheres). 
The authors assumed that the spatial arrange- 
ment of the spheres was following a homogeneous 
Poisson process. They performed stochastic analy- 
sis to obtain analytical expressions for soil water 
retention curves and relative conductivity at vary- 
ing water contents. A quantitative evaluation of 
the authors" new model was performed by ex- 
amining data on hydraulic properties for several 
soils and comparisons with currently used ex- 
pressions such as Van Genuchten, Brooks-Corey, 
and Kosugi models. The results of this study 
showed that the new developed model provided 
reasonable fits with the observed water retention 
curve and good predictions of the hydraulic con- 
ductivity particularly for soils exhibiting a dis- 
tinct air entry pressure. 

It is quit clear from the literature mentioned 
previously the amount of numerical effort requir- 
ed to accurately investigate and understand the 
groundwater well draw down using the stochastic 
approach. This fact urged the need for utilizing 
new technology and techniques to facilitate these 
comprehensive numerical computations and at 
the same time preserving high accuracy. 

Artificial intelligence has proven its capability 
in simulating and predicting the behavior of the 
different physical phenomena in most of the en- 
gineering fields. Tahk and Shin (2002) presented 
a study on the fault diagnosis of Roller-Shape 
using frequency analysis of tension signals and 
Artificial Neural Networks (ANN) based ap- 
proach in a web transport system. Specifically, the 
authors suggested a new diagnosis algorithm to 
detect the effective rollers based on the frequency 
analysis of  web tension signals. Throughout their 
study, the authors utilized the characteristics fea- 
tures of tension signals (RMS, Peak value, and 
Power spectral density) to train an ANN that 
classified the roller condition into three groups 
(normal, warning, and faulty conditions). The 
results of this study showed that the suggested 
diagnosis algorithm could be successfully used 
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to identify the effective rollers as well as to di- 
agnose the degree of the defect of those rollers. 
Park and Seo (2003) explored a new Life Cycle 
Assessment (LCA) methodology for the pro- 
duct concepts by grouping products according to 
their environmental characteristics and by map- 
ping product attributes into environmental im- 
pact driver (EID) index. The relationship is sta- 
tistically verified by investigating the correlation 
between total impact indicator and energy impact 
category. Thereafter, the authors developed an 
ANN model with back propagation to predict 
an approximate LCA of grouping products in 
conceptual design. The results of the ANN model 
were compared with those of multiple regression 
analysis. Finally the authors stated that the 
proposed approach did not replace the full LCA 
but it would give some useful guidelines for the 
design of environmentally conscious products in 
conceptual design phase. 

Regarding civil engineering, in general, and 
water engineering field area specifically, ANN 
is considered one of the artificial intelligence 
techniques that have been widely utilized. Sever- 
al researchers have incorporated ANN techni- 
que in hydrology, groundwater, hydraulics, and 
reservoir operations to simulate their problems. 
Solomatine and Toorres (1996) presented a study 
of using ANN in the optimization loop for the 
hydrodynamic modeling of reservoir operation 
in Venezuela. The authors stated that the ANN 
representation of the hydrodynamic/hydrologic 
model could easily allow the incorporation of 
the various modeling components into the opti- 
mization routines. Minns (1996) investigated the 
general application of ANN in modeling rainfall 
runoff process. The results of the numerical ex- 
periments reported in his study indicated that 
ANN was capable of identifying usable rela- 
tionships between runoff discharges and anteced- 
ent rainfall depts. Ramanitharan and Li (1996) 
utilized ANN with back-propagation algorithm 
for modeling ocean waves that were represented 
by wave height and period. This study showed 
the applicability of forecasting the ocean waves 
with different neural networks for wave height 
and period. Tawfik et a1.(1997) showed the ap- 

plicability of using the ANN technique for mo- 
deling rating curves with hysteresis sensitive cri- 
terion. Kheireldin (1998) presented a study to 
model the hydraulic characteristics of severe con- 
tractions in open channels using ANN techni- 
que. The successful results of his study showed the 
applicability of using the ANN approach in 
determining relationship between different para- 
meters with multiple input/output problems. 
Abdeen (2001) developed a neural network mo- 
del for predicting flow characteristics in irregular 
open channels. "l'he developed model proved that 
ANN technique was capable with small com- 
putational effort and high accuracy of predicting 
flow depths and average flow velocities along the 
channel reach when the geometrical properties of 
the channel cross sections were measured or vice 
versa. Chandramouli and gaman (2001) devel- 
oped a dynamic programming-based neural net- 
work model for optimal multi-reservoir opera- 
tion. In this developed model, the multi-reser- 
voir operating rules were derived using a feed- 
forward neural network from the results of three 
state variables' dynamic programming algorithm. 
The authors applied the multi-reservoir system 
called Parambikulam Aliyar Project in their 
study. Comparison between the developed model 
against first the regression-based approach used 
for deriving the multi-reservoir operating rules 
from optimization results ; and second the single- 
reservoir dynamic programming-neural network 
model approach showed an improved operating 
performance. Hsu et al. (2002) presented a multi- 
variate ANN procedure entitled seLfforganizing 
linear output map (SOLO) whose structure was 
designed for rapid, precise, and inexpensive esti- 
mation of network structure/parameters and sys- 
tem outputs. Specifically, the authors comment- 
ed that SOLO provides features that facilitate 
insight into the underlying processes, thereby ex- 
tending its usefulness beyond forecast applica- 
tions as a tool for scientific investigations. These 
characteristics were demonstrated in their paper 
using a classic rainfall-runoff forecasting prob- 
lem. in addition, the authors have tested the 
various aspects of their model performance using 
comparison with other commonly used modeling 



Predicting the Impact o f  Subsurface heterogeneous Hydraulic Conductivity on the Stochastic Behavior ... 1585 

approaches including multilayer feed-forward 
ANNs, linear time series modeling, and concep- 
tual rainfall-runoff modeling. 

It is quit clear from the previously presented 
literature that ANN technique showed its ap- 
plicability in simulating and predicting the be- 
havior of different engineering and hydrologic 

problems. However, the utilization of ANN tech- 
nique in simulating and predicting the stochas- 
tic behavior of the groundwater flow based on 
heterogeneous subsurthce formation and especial- 
ly the stochastic fluctuation and characteris- 
tics of unsteady well draw down is very limited. 
Therefore, the presented study is aimed towards 
utilizing the ANN technique in modeling the 
two-dimensional stochastic behavior of the un- 
steady well draw down resulted from pumping 
water [rom a confined aquifer. 

2. Problem Description 

The current paper simulates and predicts the 
stochastic behavior of the two-dimensional un- 
steady well draw based on heterogeneous sub- 
surface formation using ANN technique. A full 
penetrating well that is discharging water from a 
confined aquifer is considered as shown in Figure 

1. The aquifer thickness is assumed to be 100.0 m. 
The data used in the current study is the one 

presented by Abdin and Abdeen (1999) where 
they utilized the Monte Carlo approach to simu- 
late the stochastic behavior of the well draw down 
and they strongly commented about the tremen- 
dous and extensive numerical efforts performed in 
their study. In addition, Monte Carlo approach 
adopted in Abdin and Abdeen (1999) was used 
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Fig. 1 Schematic diagram for the investigated prob- 
lem 

for simulating the stochastic behavior of the well 
draw down based on existing and determined sub- 
surface heterogeneous formations. As it is very 
well known and commented by many researchers, 
Monte Carlo technique involves huge computa- 
tional efforts in its application. The reader is 
kindly referred to the study presenled by Abdin 
and Abdeen (1999) for the complete description 
of the Monte Carlo approach and its associate 
mathematical computations and results. 

However, the current presented study utilized 
ANN technique ill developing an easy, but nu- 
merically efficient, model for simulating this sto- 
chastic behavior based on some existing deter- 
mined data and thereafter the model is used for 
predicting this behavior for unknown subsurface 
heterogeneous formations. This is considered the 
added value of the current paper which is presen- 
ting a simple computational modeling approach 
for the prediction of the stochastic behavior of the 
well draw down based on limited heterogeneous 
subsurface formation with small computational 
eftbrt. 

Specifically, several neural network models 
are developed in this study to accurately imulate 
the highly heterogeneous and stochastic unsteady 
well draw down fluctuations. The subsurface het- 

erogeneity in this study is represented by the two- 
dimensional stochastically generated hydraulic 
conductivity as they were presented in Abdin and 
Abdeen (1999). The mathematical and hydrolo- 
gic parameters of the investigated problem can be 
shown in Table 1 as they were reported by Abdin 
and Abdeen (1999). On the other hand, if field 
data were available for the same problem, the 
ANN approach and its methodology, described in 
this study, can be utilized to simulate this real 
c a s e .  

2.1 Subsurface heterogeneity 
The subsurface heterogeneity, in the current 

study, is presented by the spatially correlated 
stochastic input process f ; where f = l n  k ; and k 
is the hydraulic conductivity. As mentioned by 
Abdin and Abdeen (1999), several assumptions 
were used in the generation of this stochastic 
process and they can be outlined as tbllows : 
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Table 1 
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Mathematical and hydrologic parameters for the investigated application 

Parameter 

NX 

NY 

DX 

DY 

LX 

LY 

Ho 

Definition 

No. of nodes in the X-direction 

No. of nodes in the Y-direction 

Increment spacing in the X-direction 

Increment spacing in the Y-direction 

Correlation length in the X=direction 

Correlation length in the y-direction 

Initial water head in the aquifer 

Confined aquifer storitivity 

B Confined aquifer thickness 

K Average Hydraulic conductivity 

Q Well pumping rate 

Value 

50 

50 

10.0 (m) 

1o.o (m) 
30.0 (m) 

30.0 (m) 

10.0 (m) 
0.002 

100.0 (m) 

3.0 (m/day) 
300 (mS/day) 

(1) Log=hydraulic conductivity ( f -~ lnk )  is 
considered second-order stationary stochastic pro- 
cess, and is assumed to be normally distributed 
(Chang et al., 1995a and 1995b). 

(2) The fluctuations of this process is assumed 
to have correlation scales smaller than the scale of 
the flow domain. 

(3) The spatial structure of the fluctuations of 
In K will be described by the exponential autoc- 
ovariance function (Yeh et al. 1985a) 

The assumptions listed above have been tradi- 
tionally used in most previous stochastic analyses 
of saturated, unsaturated, and multiphas¢ flow. In 
the Abdin and Abdeen (1999) study, they used 
the exponential autocovariance function, R/: ,  and 
its correspondence spectrum, S / / :  as were used by 
Chang et al., 1995a and 1995b for the two- and 
three-dimension cases and they can be presented 
as follows : 

R//(~) = d  exp[- U~] ( i )  

dA3 (2) s : / ( K )  - ~ (  I + A2I~)~ 

where ~----separation distance, /l~-covariance 
length, ¢7/=standard deviation of f ,  and K = 

wave number. The random generation of the 
process is performed using the turning bands 
method and spectral approach described by 
Mantoglou and Wilson (1982). 

2.2 Stochastic behavior of the well draw 

down 
The study presented by Abdin and Abdeen 

(1999) investigated the stochastic behavior of 
the well draw down using the Monte Carlo ap- 
proach utilizing the input heterogeneous and hy- 
drological data described previously. Specifically 
Abdin and Abdeen (1999) developed a finite 
difference-based model for the solution of the 
two-dimensional unsteady well draw down re- 
sulting from a pumping well located in the center 
of the confined aquifer described in the previous 
section. Thereafter, the authors utilized the Monte 
Carlo approach to profoundly investigate the 
stochastic behavior of  the well draw down based 
on the subsurface heterogeneous formation de- 
scribed above. The authors in Abdin and Abdeen 
(1999) commented about the huge computation- 
al effort required to obtain the main finding 
stated in their study. This numerous computa- 
tional process urged the authors to explore new 
techniques and approaches such as Artificial 
Neural Networks (ANN) for an easy, but effi- 
cient, methodology for simulating and predicting 
unknown results for the stochastic behavior ofthe 
well draw down. 

Therefore, the current study presented in this 
manuscript is mainly concerned with developing 
an ANN model utilizing part of  the input and 
output data, presented by Abdin and Abdeen 
(1999), for predicting the stochastic behavior of  
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the well draw down using only the input het- 

erogeneous and hydrological data. For the cur- 

rent study to be complete, the major finding for 
the stochastic behavior of  the well draw down, 

presented by Abdin and Abdeen (1999), is des- 

cribed. 
The main conclusion drawn from Abdin and 

Abdeen (1999) was the direct impact of  the pro- 

perties of the subsurface heterogeneity to the 
confined aquifer ground water head variations. 

The increase in subsurface heterogeneity clearly 

resulted in a remarkable increase of  the unsteady 

draw down and its variations all over the entire 
aquifer. On the other hand, the increase in the 
correlation lengths in both spatial directions did 

not show a constant (increasing or decreasing) 
trend for the draw down or its variations all over 
the entire aquifer. The results, presented in Abdin 

and Abdeen (1999), clearly recommend the cau- 
tious design for the pumping from a well dischar- 

ging from a heterogeneous confined aquifer so 
that the aquifer should not be drained. 

It is probably worth mentioning here that the 
current study, presented in this manuscript, does 

not investigate the stochastic behavior of  the 
well draw down using ANN. However, it de- 
velops an ANN model for predicting this sto- 
chastic behavior with much less computational 
effort but efficiently accurate using part of  the 

results presented in Abdin and Abdeen (1999) for 
training the Neural Networks. 

X ! 

A e l l v a l i t m  [:unt.llcm 

Fig. 2 Typical picture of a model neuron that exists 
in every neural network 

, ~J  y 

is considered a distributor of  the signals from the 
external world while hidden layers are eonsidered 

to be feature detectors of  such signals. On the 
other hand, the output layer is considered as a 

collector of  the features detected and the producer 
of the response. 

4. N e u r a l  N e t w o r k  Operation 

It is quit important for the reader to understand 
how the neural network operates to simulate 
different physical problems. As described by 
Abdeen (2001) the output of  each neuron is a 

function of  its inputs (St) .  In more details, the 
output ( Y  j) of the jth neuron in any layer is 

described by two sets of  equations as follows: 

U~= ~. ( X ,w  ,j) (3) 

3. N e u r a l  N e t w o r k  S t r u c t u r e  

Neural networks are models of biological 
neural structures. Abdeen (2001) described in a 

very detailed fashion the structure of any neural 
network. Briefly, the starting point for most net- 
works is a model neuron as shown in Figure 2. 
This neuron is connected to multiple inputs and 
produces a single output. Each input is modified 
by a weighting value (w).  The neuron will com- 
bine these weighted inputs with reference to a 

threshold value and an activation function, will 
determine its output. This behavior follows 
closely the real neurons work of  the human's 
brain. In the network structure, the input layer 

And 

Yj-- Fth ( Uj-t- t~) (4) 

For every neuron, j,  in a layer, each of  the i 
inputs, X~, to that layer is multiplied by a previ- 
ously established weight, wi~. These are all sum- 
med together, resulting in the internal value of 
this operation, Uj. This value is then biased by 
a previously established threshold value, l~, and 
sent through an activation function, Fth. This 
activation function can take several forms but the 

most commonly used one is the Sigmoid function 
which has an input to output mapping as shown 
in Figure 3. The resulting output, Y~, is an input 

to the next layer or it is a response of the neural 
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output 

input 
i 

(Negative) 0 (Positive) 

Fig. 3 The sigmoid activation function used in most 
of the designed networks 

network if it is the last layer. On the other hand, 

other activation functions are commonly used by 
the researchers in this field such as Step, Linear. 

Hyperbolic, and Gaussian functions. In applying 
the Neural Network technique, in this study, 

Neuralyst Software, Shin (1994), was used. 

5. Neural Network Training 

The next step in neural network procedure as 

described by Kheireldin (1998) is the training 
operation. The main purpose of this operation is 
to tune up the network to what it should pro- 
duce as a response. From the difference between 

the desired response and the actual response, the 

error is determined and a portion of it is hack 
propagated through the network. At each neuron 
in the network, the error is used to adjust the 
weights and the threshold value of this neuron. 
Consequently, the error in the network will be 
less for the same inputs at the next iteration. This 
corrective procedure is applied continuously and 
repetitively for each set of inputs and corre- 

sponding set of outputs. This procedure will de- 
crease the individual or total error in the re- 
sponses to reach a desired tolerance. Once the 
network reduces the total error to the satisfied 
limit, the training process may stop. The error 

propagation in the network starts at the output 
layer with the following equations : 

wit = w',~ + L R ( e jX , )  

And, 

e~= Y A  n - Y~) ( d j -  I,5) 

(5) 

(6) 

Where, w,'~ is the corrected weight, w~. is the 

previous weight value, L R  is the learning rate, 

ej is the error term, X ,  is the i ~ input value, Y~ 
is the ouput, and d~ is the desired output. 

6. Simulation Cases 

To fully investigate the stochastic behavior of 
the two-dimensional unsteady well draw down 

resulted from pumping the water from a confined 
aquifer with subsurface heterogeneous hydraulic 
conductivity, several simulation cases are consi- 
dered in this study. These simulation cases can be 

divided into two groups. The first group simulates 
the impact of the subsurface heterogeneous hy- 
draulic conductivity on the two-dimensional un- 
steady well draw down using ANN. The second 

group simulates the impact of the same subsur- 
face heterogeneous parameter on the stochastic 
variability of the two-dimensional unsteady well 
draw down represented by its standard deviation. 

Specifically this second group utilizes ANN tech- 

nique to predict the Monte Carlo results. 

7. Neural Network Design 

To develop a neural network in order to simu- 

late the impact of the subsurface heterogeneous 
hydraulic conductivity on the well draw down or 

its standard deviation (Monte Carlo Case), first 
input and output variables have to be determined. 
Input variables are chosen according to the nature 
of the problem and the type of data that would be 
collected in the field if this were a field experi- 

ment. The basic inputs for the two simulation 
groups are the one presented in Table I. These 
variables are considered to be constant for all the 
neural network models developed in this study. 
Besides these basic inputs, other variables are 
considered to be key inputs for the neural net- 
work development of the two simulated groups. 
To clearly specify the key input variables for each 

neural network simulation groups and their 
associated outputs, Table 2 is designed to sum- 
marize all neural network key input variables and 
outputs for these two groups. 



Predicting the Impact o f  Subsurface heterogeneous Hydraulic Conductivity on the Stochastic Behavior ... 1589 

Table 2 Key input variables and outputs for the two neural network simulation groups 

Groups No. 

First Group 

Second Group 
(Monte Carlo) 

Simulation case 

Unsteady 

Spatial 

Unsteady 

Spatial 

Input variables 

Time o'j 

X-Distance 0'~, 

Time o'I 

X-Distance a/ 

Output Variables 

Draw down at the well 

Draw down after 38 days of continuous pumping 

Standard Deviation of draw down at the well 

Standard Deviation of Draw down after 38 days 
of continuous pumping 

Where crj is the standard deviation of the sub- 

surface heterogeneous hydraulic conductivity. 

It can be noticed from Table 2. that each group 

of neural network simulations consists of two 

simulation cases (neural network model) for the 

unsteady and spatial variations of  the draw down 

and its variability. The value of o/  varies from 

0.1 to i.0 for the first group and from 0.1 to 0.5 

for the second group;  and the distance in the 

x-direct ion varies from the center of the aquifer 

where the well is located up to 240.0m (the 

aquifer border) for the two groups. On the other 

hand, each simulation case within each group is 

divided into two sub-simulat ion cases. The first 

one trains the network with the whole domain 

for OI and predicts an intermediate tYf related 

outputs (Interpolation prediction). The other 

sub-simulation case trains the network with lim- 

ited domain for a i  and predicts an external g/  

related outputs (Extrapolation prediction).  Due 

to space limitation of  the current research paper, 

the exact numeric values for the inputs and out- 

puts for all the simulation cases will not be list- 

ed, however, the reader is referred to the study 

presented by Abdin and Abdeen (1999) for all 

these data information. 

However, if the ANN mode/ was to be ap- 

plied to a field experiment, the type of input data 

needs to be collected would be the same as they 
are listed in Tables 1 and 2. Similarly, the set of  

output variables required for the training of  the 

ANN would also need to be collected and re- 

ported as they were measured in the field corre- 

sponding to their input variables conditions. 

Several neural network architectures are de- 

signed and tested for each of  the sub-simulated 

cases investigated in this study to finally deter- 

mine the best network model to simulate, very 

f (x)  = l ~ /x_  

Inptn# 2 

) 
Hidden layer Htdd~l layer 

3 neurons 3 neurons 

Fig. 4 

Output # 1 

Output ,~ 2 

General schematic diagram of a simple 
generic neural network 

accurately, the impact of the subsurface hetero- 

geneous hydraulic conductivity on the two-di-  

mensional unsteady well draw down and its 

statistical variabil i ty based on minimizing the 

Root  Mean Square Error (RMS-Error ) .  Figure 4 

shows a schematic diagram for a generic neural 

network. 

Due to the extreme difficulty and heterogenei- 

ty of the investigated problem in the presented 

study, one specific neural network is designed 

and developed for each sub-simulation case (In- 

terpolation and Extrapolation) among the two 

simulation cases (unsteady and spatial) for the 

two main groups. Table 3. shows the final neural 

network models for each sub-simulation case and 

their associated number of neurons. 

The input and output layers represent the key 
input and output variables described previously 

for each sub-simulat ion case. It is very important 

to mention here that all the developed models 

incorporated the sigmoid activation function 

presented in Figure 3 except the last model for 

the spat ial-extrapolat ion ease, the Hyperbolic ac- 

tivation function is used. The Sigmoid function 

typically has a narrow region about zero wherein 

the output will be roughly proport ional  Io the 
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input, but outside this region the Sigmoid func- 

tion will limit to full inhibition or full excitation, 

Shin (1994). The Sigmoid function can be ex- 
pressed mathematically as follows: 

1 
/ ( x )  = ~  (7) 

l + e  -x 

On the other hand, the Hyperbolic function is 

shaped exactly as the Sigmoid one with the same 
mathematical representation but it ranges from 

1 to -4-1 gather than from 0 to 1. Thus it has the 
interesting property that there is inhibition near 0, 

but values at either extreme will be excited to full 
level, but in opposite sense. In addition, the 

Hyperbolic function can be considered as a switch 
with an intermediate range where is can be 

discriminating, Shin (1994). 
The training parameters of  the various network 

models developed in the current study for the 
different sub-simulation cases are presented in 

Table 4. These parameters can be described with 
their tasks as follows: 

Learning Rate (LR) : determines the magnitude 
of  the correction term applied to adjust each 

neuron's weights during training process. 
Momentum (M) : determines the "life time" of  a 

correction term as the training process takes 

place. 
Training Tolerance (TRT) : defines the percent- 
age error allowed in comparing the neural net- 
work output to the target value to be scored as 

"Right" during the training process. 
Testing Tolerance (TST) : it is similar to Train- 
ing Tolerance, but it is applied to the neural 
network outputs and the target values only for the 

test data. 
Input Noise  ( I N ) :  provides a slight random 

variation to each input value for every training 

epoch. 

Table 3 The developed neural network models for all the simulated cases 

Group No. 

I 
(Draw down) 

2 
(Monte Carlo) 

Simulation 
case 

Sub-simulation 
c a s e  

Unsteady Interpolation 

Unsteady Extrapolation 

Spatial Interpolation 

Spatial Extrapolation 

Unsteady Interpolation 

Unsteady Extrapolation 

Spatial Interpolation 

Spatial Extrapolation 

No. of 
layers 

3 

4 

4 

4 

3 

4 

4 

4 

No. of 
neurons in 
Input layer 

No. of 
neurons in 
first hidden 

layer 

No. of 
neurons in 

second 
hidden layer 

No. of  
neurons in 

output layer 

2 2 - I 

2 2 2 1 

2 2 2 I 

2 2 3 I 

2 5 - 1 

2 3 3 I 

2 5 4 I 

2 3 2 1 

Table 4 Parameters used in the developed neural network models for all the simulated cases 

Group No. 

I 
(Draw down) 

2 
(Monte Carlo) 

Simulation 
case 

Unsteady 
Unsteady 

Spatial 
Spatial 

Unsteady 
Unsteady 

Spatial 
Spatial 

Sub-simulation 
LR M TRT TST IN FG 

Case 

Interpolation 1 0.9 0.01 0.03 0 1 
Extrapolation I 0.9 0.03 0.05 0 I 

Interpolation 1 0.9 0.03 0.05 0 I 
Extrapolation l 0.9 0.008 0.01 0 I 

Interpolation 1 0.9 0.008 0.009 0 1 
Extrapolation I 0.9 0.008 0.009 0 1 

Interpolation ! 0.9 0.006 0.008 0 I 
Extrapolation l 0.9 0.004 0.006 0 I 

SM 

0.1 
0.1 

0.1 
O.l 

0.1 
0.1 

0.1 
0.1 
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Function Gain (FG) : allows a change in the o.7zo 

scaling or width of the selected function. ?' ~ 0,765 

Seal ing Marg in  ( S M ) :  adds additional head- 
room, as a percentage of range, to the rescaling ~0.7s0 

computations used by Neuralyst Software, Shin ~07s5 

(1994), in preparing data for the neural network 0.75o 

or interpreting data from the neural network. 

8. R e s u l t s  and  D i s c u s s i o n  

As mentioned earlier, the current study inves- 

tigates the impact of substlrface heterogeneous 

hydraulic conductivity on the two-dimensional  

unsteady well draw down resulting from a pump- 

ing well in the middle of a confined aquifer. To 

successfully simulate the stochastic heterogeneous 

behavior of the draw down using ANN,  the 

analysis is divided into tow major groups. The 

first group simulates the unsteady and spatial 

behavior of  the draw down as a function of the 

subsurface heterogeneity. While the second group 

simulates the Monte Carlo results for the un- 

steady and spatial behavior of the draw down 

variability. 

8.1 First Group: Unsteady and spatial be- 
havior of the draw down 

This group of analyses investigates the impact 

o f  the subsurface heterogeneous hydraulic con- 

ductivity on the unsteady and spatial behavior of  

the draw down in the confined aquifer. This 

group is divided into two simulation cases;  un- 

steady and spatial ones. 

8.1.1 Unsteady simulation case 
To make the current presented study complete 

and to show the various capabilit ies of  the ANN 

technique, two sub-simulat ion cases are consi- 

dered and two ANN models are developed tbr the 

unsteady case. The first model coincides with the 

first sub-simulat ion case that can be named as the 

interpolation case. In this case, a wide domain of  

subsurface heterogeneous hydraulic conductivity 

and its associated draw down results is fed to the 

ANN model tbr training the network. Specific- 

ally, the ANN model network is trained with o'/ 

(standard deviation of the hydraulic conduc- 

: i . . . .  ! . . . . . . .  

0 tO 20 30 40 
Time (days) 

ErI~¢] 
Fig. 5 Draw down prediction at the well using ANN 

and its % relative error compared with the 
target values for a /= -  0.5, (Sf represents a:) 

tivity) ranges from 0.1 to 1.0 hiding the values 

lbr 0 : = 0 . 5  for prediction and testing the accuracy 

of developed model. The results of  this interpola- 

tion case are presented in Figure 5. This figure 

shows the target required, A N N  prediction, and 

the percentage relative error values between the 

target and the ANN prediction for the draw down 

at the well as a function of the pumping time. It 

is clearly shown from this figure how accurate the 

developed ANN model for predicting the draw 

down values at the well for the case of  a : = 0 . 5  

when the network was trained with a large a: 

domain since the maximum percentage relative 

error between the target required draw down 

values and the ANN prediction ones was less than 

1.0%. 
The second sub-simulation case and the second 

ANN model are designed for the extrapolation 

case. In this case a limited domain range of o': 

(fi'om 0.1 to 0.7) and its associated draw down 

values at the well as a function of  the pumping 

time is fed to the developed network for training. 

While the prediction accuracy of  the developed 

ANN is tested for the draw down values for 

a : = l . 0 .  Figure 6 shows the target required, 
ANN prediction, and the percentage relative error 

values between the target and the ANN prediction 

for the draw down at the well as a function of  the 

pumping time for the heterogeneous case of  ( r :=  

1.0. It is clearly shown from this figure how 

accurate the developed ANN model for predicting 

the draw down values at the well for the case of  

a:=l.O when the network was trained with a 

limited a: domain since the maximum percentage 
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Fig. 6 Draw down prediction at the well using ANN Fig. 7 
and its % relative error compared with the 

target values for 0"f= 1.0, (Sf represents o's) 

relative error between the target required draw 

down values and the ANN prediction ones was 

less than 6.2%. 

8.1.2 Spatial  simulation ease 

This simulation case utilizes ANN technique to 

investigate the impact of the subsurface hetero- 

geneous hydraulic conductivity on the spatial 

behavior of  the draw down along the X-direct ion 

in the confined aquifer after 38 days of  continu- 

ous pumping. In the current paper, only X-direc-  

tion results are presented to show the appli- 

cabili ty of using ANN in investigating the spatial 

stochastic draw down behavior, however, any 

spatial direction within the confined aquifer will 

have the same results obtained in this manuscript. 

The same two sub-simulat ion cases (interpola- 

tion and extrapolation cases) considered in the 

unsteady simulation case described previously are 

also considered in the spatial case. Two ANN 

network models are developed for the two spatial 

sub-sinaulation cases and their layering structures 

can be shown in Table 3. The results of applying 

the ANN model developed for the interpolation 

case spatially are presented in Figure 7. This 

figure shows the target required, ANN prediction, 

and the percentage relative error values between 

the target and the ANN prediction for the draw 

down along the X-distance from the well after 38 

days of  continuous pumping time. It is clearly 

shown from this figure how accurate the devel- 

oped ANN model for predicting the draw down 

values for the case of aI----0.5 when the network 

was trained with a large o's domain since the 

16 

< 
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4 .$ 

| 
0 ,.,* 

50 1 O0 150 200 250 
X-Distance from the Well (in) 

I ~ Targel ANN-Pre¢~¢lio~ A % Relatlvl~ ErlO¢t 

Draw down prediction along the X-direction 
of the aquifer using ANN and its % relative 
error compared with the target values for (b, = 
0.5 after 38 days of continuous pumping, (Sf 
represents crf) 

1 
o 

'.2' 0.8 ¢t} 

"~'0.6 

~0.4 
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Fig. 8 Draw down prediction along the X-direction 
of the aquifer using ANN and its % relative 
error compared with the target values for o'I= 
1.0 after 38 days of continuous pumping, (Sf 
represents of) 

maximum percentage relative error between the 

target required draw down values and the ANN 

prediction ones was less than 14.0% occurred 

only at the very small draw down values near the 
aquifer border. 

On the other hand, the results of  the develop- 

ed ANN model for the extrapolation case are 

presented in Figure 8. Once again, this extrapola-  

tion case considers a limited range for ~/ (from 

0.1 to 0.7) and its associated spatial draw down 

values for training the developed model. How- 

ever, the spatial draw down for (rl = 1.0 is used for 

testing the prediction power of  the developed 

ANN network model. It is presented in Figure 8. 

that the maximum percentage relative error be- 
tween the target required draw down values and 

the ANN prediction results is less than 15% and 
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it occurred at the far end of the aquifer where the ~o2~ 
~oz2~ draw down values are very small. While all the ~ 0.22 

percentage relative error values from the well up 
dSoPt9 to 230.0 m were less than 10%. These good results 

show the high accuracy of  the developed model ~0~a 
~ 0.217 for this extrapolation case. 
ca 
,~, o216 

8.2 Second group:  unsteady and spat ial  

monte  carlo 

This group of analyses investigates the impact 

of  the subsurface heterogeneous hydraulic con- 

ductivity on the unsteady and spatial behavior 

of  the draw down variabil i ty represented by the 

standard deviation of the draw down in the 

confined aquifer. Basically this group simulates 

the Monte Carlo results prodneed by Abdin and 

Abdeen (1999). This group is divided into two 

simulation cases;  unsteady and spatial ones. 

8.2.1 Uns teady  s imulat ion  ease  

This simulation case is concerned with the 

unsteady behavior of the draw down variabili ty 

at the well in the middle of  the confined aqui- 

fer. Similar to what was investigated in the first 

group, two sub-simulation cases are also consi- 

dered here namely;  interpolation and extrapola- 

tion as described previously. However, in the 

Monte Carlo group of  simulations, the o / d o m a i n  

ranges from 0.1 to 0.5. The interpolation case 

trains the developed ANN model with the entire 

domain hiding the data for ty~,=0.3 and use them 

as a test for predicting the accuracy of  the de- 

veloped model. On the other hand, the extra- 

polation case trains the developed ANN network 

mode using a limited domain lbr dr from 0.1 to 

0.3 and predicts Ihe draw down standard devia- 

tion for the heterogeneous case of a /=0 .5 .  The 

results of the interpolation and extrapolation 

cases are presented in Figures 9 and 10; respec- 

tively. These figures show the target-required 

values of  the standard deviation for the draw 

down at the well as a function of  the pumping 

time tip to 38 days and the percentage relative 

error between the target and the predicted values. 

As it is clear from these figures that the maxi- 

mum percentage relative error for the interpola- 

tion case was less than 2 ~  and less than 5% for 

Fig. 9 
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compared with the target values for tL,=0.3, 
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Standard deviation of draw down prediction 
at the well using ANN and its % relative 
error compared with the target values for 
o'y----0.5, (Sf represents o't) 

the extrapolation ease. These very small errors 

prove the capabilities of the ANN technique in 

simulating the Monte Carlo results for the un- 

steady standard deviation draw down at the well. 

8.2.2 Spat ia l  s imulat ion  ease  

This simulation case is concerned with the 

spatial behavior (along the X-direction) of  the 

draw down variabil i ty within the confined aquifer 

away from the well. Similar to what was investi- 

gated in the first group, two sub-simulation cases 

are also considered here namely;  interpolation 

and extrapolation as described previously. Simi- 

lar to the unsteady simulation case of the second 

group, the spatial simulation case considers the o'y 

domain ranges fi'om 0.1 to 0.5. The interpolation 

case trains the developed ANN model with the 

entire domain hiding the data for a f=0 .3  and use 

Ihem as a test for predicting the accuracy of  the 
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F i g .  12  Standard deviation of draw down prediction 
along the X-direction of the aquifer using 
ANN and its o~ relative error compared with 
the target values for a/=0.5 after 38 days of 
continuous pumping, (Sf represents ty:) 

developed model. On the other hand, the extra- 

polat ion case trains the developed ANN network 

mode using a limited domain range for o': from 

0.1 to 0.3 and predicts the draw down standard 

deviation for the heterogeneous case of  a :=0 .5 .  

The results of the interpolation and extrapolation 

cases are presented in Figures 11 and 12 ; respec- 

tively. These figures show the target-required 

values and the ANN prediction of the standard 

deviation for the draw down along the X-dis-  

tance away from the well after 38 days of  contin- 

uous pumping as well as the percentage relative 

error between the target and the predicted values. 

It can be noticed fi'om Figure I! that the maxi- 

mum percentage relative error for the interpola- 

tion case was less than 10%. However, most of the 

percentage relative error for the extrapolation 

case presented in Figure 12 was also less than 10% 

except the last three values behind 220.0 m away 

from the well where the draw down variability 

was very small in these values. These small errors 

in the two figures prove the capabili t ies of  the 

ANN technique in simulating the Monte Carlo 

results for the spatial standard deviation of draw 

down along the confined aquifer. 

9. Summary and Conclusion 

The current study was aimed towards inves- 

tigating the applicabili ty of using the artificial 

neural network (ANN) technique in simulating 

and predicting, with little computational  effbrt, 

the impact of subsurface heterogeneous hydraulic 

conductivity on the unsteady two-dimensional  

stochastic behavior of  a confined aquifer draw 

down resulting from a pumping well in the mid- 

dle of the aquil~r. The data used in the current 

study was the same data reported by Abdin  and 

Abdeen (1999). 

Two groups of  simulations were considered in 

the current s tudy;  The first group simulates the 

impact of the subsurface heterogeneous hydraulic 
conductivity on the unsteady two-dimensional  

well draw down using ANN. While the second 

group simulates the impact of the same subsurface 

heterogeneous parameter on the stochastic vari- 

ability of  the two-dimensional  unsteady well 

draw down represented by its standard deviation. 

Specifically this second group utilizes ANN tech- 

nique to predict the Monte Carlo results. There- 

after each group of  simulation is divided into two 

simulation cases ; unsteady and spatial cases. The 

unsteady case utilizes the ANN technique to sim- 

ulate and predicte the unsteady stochastic be- 

havior of the draw down (first group) or its 

standard deviation (second group) at the well. 

On the other hand, the spatial simulation case 

incorporates the ANN technqiue to simulate and 

predict the spatial stochastic behavior of  the 

draw down (first group) o," its standard deviation 

(second group) along the confined aquifer after 

38 days of  contineous pumping. Several ANN 

netwrok models are developed for these simu- 

lation cases to successfully simu|ate the unsteady 
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two-dimensional stochastic behavior of the draw 
down. The developed ANN models were first 
trained using part of the available data and their 
accuracy was tested against the remaining parts. 
The results of implementing the ANN technique 
in this study showed that this approach was 
capable of identifying relationship between dif- 
ferent uncertain parameters with multiple input/ 
output criterions. The ANN presented in this 
study was very successful in simulating and pre- 
dicting the impact of various scenarios of sub- 
surface heterogeneous hydraulic conductivity on 
the unsteady two-dimensional draw down in the 
investigated confined aquifer with very high ac- 
curacy and little computational efforts compared 
with the standard stochastic and Monte Carlo 
approaches. 
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